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PRINCIPLES OF MOMENT DISTRIBUTION APPLIED TO STABILITY OF STRUCTURES
COMPOSED OF BARS OR PLATES
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SUMDMIARY

The principles of the Cross method of moment distribution,
which have preriously been applied to the stability of structures
composed of bars under axial load, are applied to the stability
of structures composed of long plates under longitudinal load.
A brief theoretical treatment of the subject, as applied to struc-
tures composed of either bars or plates, is included, together
with an illustrative example for each of these hwo types of
structure. .An appendiz presents the derivation of the formulas
Jor the rarious stiffnesses and carry-over factors used in solring
problems in the stability of structures composed of long plates.

INTRODUCTION

The usual procedures for calculating critical buckling
loads for the members of complex struetures are often some-
what involved and are not easily reduced to a set of routine
calculations. Many practical engineers, as a consequence,
do not attempt to calculate critical buckling loads.

One approach to the solution of problems in the stability
of structural members that is purely engineering in character
and that lends itself to simplified caleulations is provided by
use of the principles of the Cross method of moment dis-
tribution (reference 1). The theory of moment distribution,
originally devised as a rapid method of stress analysis,
describes how the resistance to an external moment, applied
at any joint in a sfructure composed of bars, is distributed
throughout the structure in accordance with the resistance
of the various joints to rotation. The original theory of
Cross was modified by James (reference 2) to take into
account the possibility of axial load in the members.

The modified theory of James has already been applied
in. reference 3 to the study of the stability of structures
vomposed of bars under axial Joad. Because of the funda-
mental character of the quantities used in the method of
moment distribution and of the formulas associated with
them, it is possible by suitable definition of the quantities to
apply an analysis exactly like that of reference 3 to the study
of the stability of structures composed of plates under
longitudinal Ioad.

The present report gives a generalized derivation of the
formulas, applicable to both bar and plate structures. The
evaluation of various quantities for structures composed of
bars was given in reference 3. The corresponding evaluation

of the quantities for structures composed of plates is given
in an appendix to this report.

SYMBOLS

GENERAL

E  modulus of elasticity
W load on struecture
& rotation of joint
y  deflection
r  series stability factor
U modified stiffness stability factor
BARS
E  effective modulus of elasticity for stresses beyond the

elastic range
I moment of inertia of cross section about an axis per-
pendicular to plane of bending

A area of cross section
- . T
p radius of gyration (-\/ 71)
L length of bar
P axial load in bar (absolute value) _
¢

P _ex?
fixity coefficient in column formula { 4 (L

stiffness factor (\/_ )
(L).f, JE

effective plate modulus for stresses beyond the elastic
range

Poisson’s ratio

half wave length of buckles in longitudinal direction

width of plate

thickness of plate

PLATES

t=

fiexural stiffness of plate per unit length (‘12(1_ %)

g merE

effective flexural stiffness of plate for stresses beyond
P

the elastic range BO—
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¢ longitudinal compressive stress in plate
bt {always positive)
== ysp
M Dbending moment
2, amplitude of sinusoidally dlstmbuted moment,
¢  restraint coefficient
w deflection normal to plane of plate

SUBSCRIPTS
¢+  initial value
cr  critical
eff effective
flange
W web
DEFINITIONS

Meraber.—The word “member” is used in this report to
indicate either a bar or an infinitely long, flat, rectangular
plate.

Joint.—A joint in a structure composed of plates, by
analogy to & joint in a structure of bars, is defined as the
entire length of the intersection line between two or more
joined plates.

Stiffness and oarry-over factor—If a bar is on unyielding
supports at each end, the moment at one end necessary to
produce a rotation of one-fourth radian at that end is called
the stiffness of the bar and the rafio of the moment developed
at the far end to the moment applied at the nesr end ‘is
called the carry-over factor of the bar.

In order to write similar definitions of stifiness and carry-
over factor for plates, it is necessary to include a statement
showing how the moment is distributed along the edges of
the plate. The solution of the differential equation for the
critical compressive stress of an infinitely long plate with
given edge restraints reveals that, when the plate buckles,
the moments and the rotations at both edges of the plate
vary sinusoidally along the edges and are in phase with each
other. The ratio of moment per unit length at any point
along the edge to the rotation at that point is therefore
constant elong the edge for a given wave length. The
following definitions of stiffness and carry-over factor for
plates may therefore be written:

Stiffness—If an infinitely long flat plate is under
longitudinal compression with one unloaded edge on
an unyielding support, the ratio of moment per unit
length at any point along this unloaded edge to the
rotation in quarter-radians at that point when the
moment is distributed sinusoidally is called the stiffness
of the plate.

Carry-over factor—The ratio of the moment per
unit length developed at any point along the far un-
loaded edge to the applied moment per unit length at
the corresponding position along the near unloaded
edge is called the carry-over factor of the plate.

The foregoing definitions make it possible fo use various
stiffnesses and carry-over factors in a similar manner for
both bars and plates.

The symbols used to designate the stifiness and carry-over
factor for the different types of support and restraint at the
far end or edge are given in the following table:

Stiffness Ca[l;rcsvt-grvu Conditions at far end or edge

8 . c Far end or edge supported and fixed agalnst rotatlon,
st - Ct .} Far end or edge supportud and clastieally restrained
- uninst rotation.

«Sh Cllm{ Fa.r en or edge supported with no restrafnt against
lon.

sut Clllm( Far cdxe free (no sup) and no restraint agrinst rota-

b n) This condition i3 not used in connection with

>0 S Cl¥m—1 Far end or edge supported and subjected to moment

equal and opposite to that applied at near end or edge,

The quantities ST, CT, S, C! of this paper correspond to
s, C', §", C", respectively, of reference 3.

The stiffness of a bar computed according to the definition
used herein is one-fourth that computed according tv the
definition used by Cross (reference 1),  In moment distribu-
tion the relative, not the absolute, values of stiffnesses of
the members are of importance. The foregoing definition
was selected so that the stiffness of a bar of constant cross
section with no axial load and fixed at tho far end would he
EI/L instead of 4EI/L.

Sign convention.—A clockwise moment acting on the end
of a bar or at any station along the side edge of a plate is
positive and causes positive rotation at that end or station.
An external moment applied at a joint is considered to aet
on the joint; a counterclockwise moment acting on a joint
is positive.

CRITERION FOR STABILITY

It is assumed that all members in a structure composed of
bars lie in the plane in which buckling oecurs and that {he
joints of the structure are held rigidly in space but are free
to rotate subject to the elastic restraint of the connceting
members. Similarly, in a struecture composed of plates, it is
assumed thai the joinis between plates, or between plates
and longitudinal restraining members, remain in their
original straight lines but are free to rotaie subjeci to the
elastic restraint of the connccting members,

In the discussion that follows, either of two criterions for
stability may be used. For each criterion, the stiffness and
carry-over factor aré functions of the axial load in the bar
or the longitudinal load in the plate. (Scereferences 2, 3,
4, and 5.)

Stiffness criterion for stability.—From a structure of many
members the section comprising one joint shown in figure 1
is considered. Figure 1 may be interpreted as being cither
a plan view of a structure composed of bars or an end view
of a'structure composed of long plates. An external moment
of —1 is assumed to be applied at the joint 4. If the strue-
ture is composed of plates, this moment is the external
moment per unit length at the station under consideration.
Because_the angles between members dat the joint are pre-
gerved and the rotations of all members at the joint musi
therefore be equal, the moment of 1 added to balance this
joint is distributed among the members in proportion to their
stiffnesses, as follows:

ES‘

’

ST, Sy,
35, to member 1,
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and so forth. The moment-distribution analysis is now
complete as far as moments at joint i-are concerned.

For stability, the moment in the members must be finite.
The stifiness criterion for stability is therefore

=8, >0 (1)

The condition of neutral stability gives the critical buckling
load for the strueture and is obtained by setting.the stiffness
stability factor equal to zero, or

ESIU=O (2)

In the general case there is more than one critical buckling
load; thus, satisfaction of equation (2) is insufficient for the
solution of a given stability problem. Instead, the lowest
load that satisfies equation (2) must be calculated and
compared with the Ioad for which the structure is designed.
Ounly if this lowest critical load is greater than the design
load is the structure stable.

A

-1 Exfernial moment

7y
F16URE 1.—8ection comprising one joint.

According to the definition of stiffness, the moment dis-
tributed to any member must be the rotation of the joint
multiplied by the stifiness of the member. Hence 6, the
rotation expressed in quarter-radians of joint ¢ caused by
the external moment —1, is

1
9=m (3)

Equation (3) will be used under the section ‘Method of
Making Preliminary Estimate of the Critical Load.”

Series criterion for stability.—In a structure of many
members, the section comprising two joints shown in figure 2
is considered. An external moment of —1 is assumed to
be applied at joint 7. If the structure is composed of plates,

this moment is the external moment per unit length at the
station under consideration. By a moment-distribution
analysis of reference 3, the total moment in members 4 at
joint ¢ is -

-Si?z%;(l—l—r-{—r’+r’+ .. .)

or
=S 1
SyFZSTy 1I—r _ 4)
where
— N 1 &)
Sy+Z8"u Syt 287,

For stability, the total moment in members 74 must be
finite. The series criterion for stability is therefore

r<l - (6)

The condition of neutral stability gives the critical buckling
load for the structure and is obtained by setting

r=1 (7)

The same considerations that apply to the stiffness
criterion for stability also apply to the series eriterion for
stability. The lowest load that satisfies the equation for
neutral stability (in this case, equation (7)) must be cal-
culated and compared with the load for which the structure
is designed. If this lowest critical load is greater than the
design load, the structure is stable.

According to the definition of stiffness, the totel moment
in members ik at joint ¢ must be the rotation of joint
multiplied by the total stifiness of members th. Hence §, the
rotation in quarter-radians of joint 7 caused by the external
moment —1, is:

1 1
9=SH+ Egra T—_.'T (8)

Formulas (2) and (7) are both derived in reference 3.
Whether formula (2) or formulsa (7) is to be used will depend
upon the particular problem. In casesin which the structure
is symmetrical about a joint, the expressions concerned with
the stiffness criterion usually involve fewer ealculations;
when the structure is symmetrical about a member, the
formulas concerned with the series criterion offer certain
advantages.

Stiffness ecriterion for stebility when structure is sym-
metrical about & member.—A modification of the stiffness
ceriterion in which the values of S' are used is sometimes
convenient when the structure is symmetrical about a
member, as shown in figure 3. TWhen this criterion is used,
opposing unit moments are applied at the two ends or edges
of the member about which the structure is symmetrical.

hy ke
i J ke
£y
~/ External mament @
k3

Fiaure 2.—Sectlon comprising two Joints.
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hl [f!

+/
External moments

ha

FrovRE 3.—8ectlon of structure symmetrical about member i,

The stiffness stability factor of equation (2) for the joint ¢
in figure 3 is then written:

ESI£=S.LV”+ EISIM=0 (9)

An illustration of the use of this special application of the
stiffness criterion in a plate problem is included in the
section ‘“‘Examples.”

CARRY-OVER FACTOR AND STIFFNESS

In order to check the stability of a group of structural
members by use of the equations previously given, additional
equations for the carry-over factor and stiffiness are required.

The member 4j shown in figure 4, on an unyielding sup-
port at ¢ and elastically restrained at j by members jk is
considered. The members jk are also elastically restrained
a{ their far ends 2. By a2 moment-distribution analysis
(reference 3) it follows that the carry-over factor C'; is

Z8' ) (10)

Sty Sy (11
HTI=GuC '
Substitution of equation (10) in equation (11) gives
§ty= Sy S
8% (12)

I— Ouc'ugrﬁm

For member 4j, the limiting values of the carry-over
factor and of stiffness given by equations (10) and (12),
respectively, are obtained as follows: When the far end j is
pinned, there is no elastic restraint at § and 28%;=0. For
this limiting condition, C*;=C",=0, and S';;=8';;. When
the far end 7 is fixed, there is complete restraint at j and
28'=cw. For thislimiting condition, C";;=C\; and 8*;;=Sy;
where

S"u . (13)

A similar equation, which expresses 8™V, in terms of S™
and Cy;, can be obtained from equation (11) as follows: If the
restraint at the far end is such that Q*;;=—1, there must be,
at the far end, & moment of the same magnitude but opposite

in direction to that applied at the near end. If, therefore,
(" in equation (11) equals —1, S, becomes S™y;, where

S, =S (14
TG )

The expressions used for the computation of numerical
values of S, C, 8%, S and S'¥ for plates are given in the
appendix.

Up to this point, all the equations in this report are general.
In nearly all cases cncountered in practice, however, the
cross section and axial load do not vary along the length of
each member. For this special ease, Cy=Cyy, Syy=S,4, and
so forth. In practical problems the numerical values for
these quantities are obtained by use of tables. Such tables
are given for bars in reference 4, where the argument is
(L/3)esr, and for plates in reference 5, where the arguments
are k and \/b.

k3

FIQURE 4. —Member restralned by otber members at far end,

METHOD OF MAKING PRELIMINARY ESTIMATE OF THE
CRITICAL LOAD

In order to determine the lowest critical load for the
structure, it is necessary to test either equation (2) or equa-
tion (7) for neutral stability for different assumed loads.
The lowest load that satisfies either equation is the critical
load for the structure. If evaluation of the stiffness or the
series stability factors has required lengthy computations and
if all the assumed loads for which these factors have been
evaluated are less than the lowest eritical load, as evidenced
by the fact that Z8',; remains positive or that » remains less
than unity, a method utilizing the work already done may
be used to estimate the criticalload. This estimaled load may
then be used as a trial load in equation (2) or equation (7).

The method of estimating the lowest critical load is based
upon principles used in the analysis of experimental obser-
vations in problems of clastic stability (references 6 and 7).
Southwell (reference 6) mentioned that the unavoidable im-
perfections in practicel structures prevent the realization of
the concept of a critical load at which deflections begin.
Instead, the initial deflections present in practical structures
steadily grow with increase in load and, according to the
usual theory, the deflections become infinite as the eritical
load is approached.
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The general relation between load and deflection for
problems of elastic stability (reference 7) shows that if
(y—y)/(P—P,) is plotted as ordinate against y—y, as
abscissa, the curve obtained when P approaches P, is essen-
tially a straight line of which the inverse slope is P,,—P,.
Here y is the deflection &t load P in a member, ¥, and P,
are initial values of ¥ and P, respectively, P,, is the lowest
critical load, and

P PL P,

If simultaneous readings of load and deflection recorded in
a test are plotted as described with any load P as the initial
reading, the value of P,— P; is readily obtained. The value
of P, is then given by the relation

Pcr= (Pcr—Pl)'["Pl (15)

The relation between load and deflection can also be
applied to load and rotation of a joint provided that there is
an initial rotation of the joints. The initial rotation is
obtained by the application of the external moment —1 at
some joint, after which the load on the structure is applied.
As the lowest critical Ioad is approached, the rotations
become infinite,

If the distribution of the loads throughout the structure
does not change as the total load W increases, the axisl or
longitudingl load in each member is proportional to IT.
If (6—&)/(W—17) is plotted as ordinate asgainst §—6, as
abscissa, the curve obtained when ¥ approaches W, is
essentially a straight line with inverse slope W.,—T7,
where 6 is the rotation of a joint under the external moment
—1 when load W is on the structure, 6 and ¥, are initial
values of 8 and W, respectively, W, is the lowest critical
load, and

'I<HY<W4::

When simultaneous values of load and rotation are plotted
as described with ¥ as the initial load, the value of W,— ¥,
is easily obtained. The value of W, is then given by the
equation

We=W.—T)+W: (18)

The procedure to be used in estimating the critical load
for & group of structural members is as follows:

1. For each of the loads W™ assumed in the application of
one of the stability criterions (equation {2) or equation (7))
to a joint, calculate the rotation @ of this joint by means of
equetion (3) or equation (8).

2. Designate the lowest assumed value of W and the
corresponding value of 8 as T} and 4, respectively.

3. Plot the curve of (8—6,)/(H—W) as ordinate against
#—8, as abscissa and estimate 137, from the slope of the
resulting line. If the curve obtained is not essentially a
straight line, successively higher values of the assumed loads

§18107—850—5

¥ should be designated ¥ and the value of T, re-estimated.
The aceuracy of the estimated value of W, is improved as
both ¥ and W7 epproach .

An example of the application of this method for predict-
ing the lowest critical load is given in reference 8.

As applied to a structure of plates, this method gives a
critical load for some particular value of the half wave
length X. The value of W, that satisfies equation (2) or
equation (7) and is & minimum with respect to A must
finally be found as in the example, given subsequently
herein, in which the use of this method of estimating the
critical load for & given wave length was not required.

DISCUSSION OF METHODS

Each of the two equations for neutral stability contains
the stiffness of certain members elastically restrained at their
far ends or edges by other members. These other members
may also be elastically restrained at their far ends or edges
by still other members, and so on. By successive applica-
tion of equation (12) the restraining effect of all the members
in the structure can be considered.

In practical calculations for structures composed of bars,
modification of the actual structure by the introduction of
pins at certain joints is usually necessary. It has sometimes
been the custom to consider only one member elastically
restrained at the ends by the adjacent members, which are
gssumed to be pinned at the far ends. The calculation of
W by use of small groups of members in this manner is
quite inadequate. Treatment of much larger groups of
members in one calculation is necessary if a reasonably
accurate value of W, is to be obtained.

If the stresses in any of the members of a structure are
beyond the elastic range, the reduction of the modulus of
elasticity at these stresses must also be considered. Dis-
cussions of this reduced modulus for structures composed of
bars are given in references 3 and 8. References 9 and 10
discuss the reduced modulus of elasticity for plates at high

stresses.
EXAMPLES

Structure composed of bars.—The example of a structure
composed of bars presented herein is identical with that
given in reference 3; for the solution of the problem, the
tables of reference 3, rather than the more extensive tables
of reference 4, were used.

A continuous member of 1025 steel is to be designed to
carry the loads shown in figure 5. For simplicity, the same
cross section will be used in all spans.

Axial load in pounds: T, fension; €, campression
ag 940 ¢ 8600 T 9940 €C 86/0T 9940 C a

C |
A & 3 a r A A A
174 z a b c d e 4

60 J| 5 aof 50=250 [ 60 —v‘

Ficrre 5.—Illustrative bar problem.
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The usual column formulas for 1025-steel tubes are:

For %‘<124,
P_ 1(LY
~4=-36,000—1.172 (p) (17)
For %>124,
P_276X10° -
A1y (18)
:G)

It is desired that L/p bo less than 124. Equation (17) there-
fore is used and, on the assumption that ¢=2, a tube of the
following dimensions is selected as a tridl design for com-
pression members za, be, and de.

Diameter, @ o in.__ 1. 625
Wall thickness, . oo e in.__ 0.085
Area, Ao mimeeme -8q in.._ 0. 3186
Moment of inertie, J_______________ o ____. inf__ 0. 09707

According to the problem, this tube is used as & continuous
member from y to f (fig. 5).

In order to check the stability of the tube selected in the
trial design, the critical buckling load will be calculated and
compared with the loads given in figure 5. The axial load
in the tension spans is assumed to be always 8610/9940 or
0.866 times the axial load in the compression spans. This
assumptmn conforms to the condition that the forces in all
members incresse in the same ratio as the load on the
structure increases.

Both the dimensions and the loading of the member shown
in figure 5 are symmetrical about span be. IT is therefore
convenient to determine the critical buckling load by use of
the series criterion for stability. If the unif external moment
to be applied is at joint b, the series stability factor is given
by equation (5} with the summation signs omitted. If the
symmetry about span be is considered, the series stability
factor becomes

e (SuCh
(Sbc+SI cd)2
S¥.4
ST,,= ol _

1'—0’“ S Ic¢+s de

- (19)
where

In the equation for 8%, it is assumed that the ends at y and f
are pinned.

The detailed procedure of calculating the critical buckling
load is as follows:

1. Assume a series of values for the axial load in one of
the members. In order that the values of load be reasonable,
a compression member should always be selected and the
values of the axial load for this member computed from the
column formule by use of a series of values of ¢. In this
problem, compression member be is selected and the column
formuls is equation (17).

2. For each assumed axial load in the selected member,
calculate the corresponding axial load in every other member.,
In this problem the axial load in all compression members
is the same and the axial load in the tension members is
0.866 times the axial load in the compression members.

3. For each load in each of the members, caleulate P/,
E, and (L/§)o;. In this problem, E is obtained from equation
(17) by methods outlined in reference 3, or

= 1P 36000—%
v al-m

4. For each load in each of the members, determine the
value of the terms required to evaluate equation (19), by use
of the tables of reference 3 or 4.

5. The assumed load that gives r=1 is the critical buckling
load.

The results of this procedure as applied to the problem of
figure 5 are given in table I; the values of ¢ in the first column
are given for reference only and, as stated in paragraph 1 of
the foregoing procedure, were so assumdéd that a series of
reasonable values for the axial load P in the compression
member be could he obtained. In thelast columnof table I
are given the values of r corresponding to the assumed
values of ¢. As the value of ¢ inereases from 1.4 to 2.6, the
value of r increases from 0.133 10 1.63. If the data of table [
are plotted, it is found that when r=1 the lowest critical
buckling loads for the trial design are

za, be, and de_.____________._ 10,260 compression
aband edo e . 8,890 tension

These critical loads are greater than the loads to which the
respective members are subjected (sce fig. 5). The tube
selected for the trial design is therefore stable and the margin
of safety for the system is

10260
9940

8890 .
—l=gg75—1=0.03

A single margin of safety is obtained for the whole system
regardless of which member is used for its calculation because,
when the critieal load is reached, all members defleet.

More than one type of instability is possible, theoretically;
therefore, a&s the loads P increase, there is more than one
value of P for which r=1." (Sce {able I.) For cach typc of
instability there is & corresponding critical load. In design,
however, the lowest critical load should be calculated and
compared with the loads given in the problem.

Tahle I shows further that, for values of ¢ between 1.4 and
1.5, the value of 8%, changes from positive to negative.
According to the stiffness criterion for stability, this change
of sign means that members de and ¢f, considered alone, have
changed from stable to unstable. I{ is also noted that 5%
changes from positive to negative for values of ¢ between 2.6
and 2.7; members ed, de, and ¢f, considcered alone, have there-
fore changed from stable to unstable, but at a much higher
load. The change from stable to unstable for all members
occurs for values of ¢ between 2.5 and 2.6 when r=1,
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Structure composed of plates.—The criticel compressive
stress for local instability of a 24S-T aluminum-alloy
Z-section column with the cross-sectional dimensions shown
in figure 6 is to be determined.

It is convenient in symmetrical plate problems of this
type to use the modification of the stiffness criterion for
stability previously discussed. If opposing unit external
moments are applied at the joints between the web and
the flanges, the stiffness stability criterion, as given by
equation (9), is

_‘SIU_STIIF_E_SIV = (20)

where the subscripts F' and W~ refer to the flange and the
web, respectively.

L—' bi':" =

—AN 1, =0.05

Frocre 6.—Dlvstrative plate problem.

The tables of reference 5 give the values of S™ and S'V

in the dimensionless form S™/(D/b) and S™V/(D/b) rather
than directly. It is therefore desirable to write equation
(20) in the form

T
w155 @ 5 ()

If this equation is divided by ‘ 3 L it becomes

S8 _ gy 81 | STy

UNORURA

Because Dy/Dp=C(tw/tz)?, the stability criterion may be
written in terms of the modified stiffness stability factor U,

) - w

Sty . Sy

..

U=—re—t

The detailed procedure of celculating the critical com-
pressive stress is as follows:

1. Compute the ratios fw/tr, be/br, and bw/tw

2. Assume a value of Mbr.

3. Compute Mby from the equation

A AUDr
T e

4, Assume a series of values of kr and, for each value of
kr, compute kw from the equation

tw by)

The indicated procedure is adopted as being somewhat more
convenient than assumption of the stress and computation
of the corresponding values of kr and k. It is permissible
to compute ky from the given equetion even though the
stress is beyond the elastic range, because the stress an
thus, by assumption, the effective plate modulus are the
same in the web and the flange.

5. Evaluate the modified stifiness stability factor U
from equation (21) and the tables of reference 5.

6. Plot U against kr or ky and note the value of k for
which U is equal to zero.

7. Repeat steps 2 to 6, assuming different values of A/bp.

8. Plot values of kr for U'=0 against Afbs (or ki for
U=0 against Aby) to determine the minimum value of
ky (01‘ Lw)

9. With this minimum value of %, evaluate the eritical
stress from the formula (see deﬁmtlon of k),

k=

4 kD
=g
which may be written, for the web,
_ kgx'Ety?
RO @2)
ar, for the flange,

—_kex®Ely?
TR @3)

The value of o, will be the same regardless of whether
equation (22) or (23) is used.

The results of this procedure as applied to the problem
of figure 6 are given in table II. The values of ky for /=0
in the last column of table II were determined according
to step 6. If these values of ky are plotted ageinst Afby
(step 8), the minimum value of ky is found to be about 2.9.
(See fig.7.) The critical compressive stress for local buckling
of the section shown in figure 6 is then, from equation (22),

2.9X9.87X10.6 X107
e =""J90. 91X (40)ﬁ-—17 400 pounds per square inch

This method provides & relatively simple means of predict-
ing the critical-stress velues for columns of Z-section and
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H \\
R

o 4 .8 L2 46 20
A
by

FI1GURE 7,—Plot of kw against Nbw for plate problem,

other simple cross sections, such as I-, channel, and rectan-
gular-tube sections, Charts giving the values of k deter-
mined by this method which were prepared for wide ranges
of the dimension ratios are presented in reference 11 for
columns of I-, Z-, channel, and rectangular-tube section.

An alternate method of solution for problems of this type
makes use of the charts of references 9 and 10 and the tables
of reference 5. An -assumption is made as to whether the
flange or the web will be primarily responsible for instability.
If the flange is expected to be primarily responsible, the value
of 8™V for the web i8 determined from the tables of reference 5.
This value is then used in computing the restraint coefli-
cient e (reference 9 or 10), and the value of k is found from
figure 3 of refercnce 9. Because it is necessary to assume a
value of k and A0 in order to determine S™y, the method
will obviously involve a trial-and-error procedure. Further-
more, if repeated calculations show that S'Vy. is negative, the
assumption that the flange would be primarily responsible
for instability is incorrect. In this case, it will be necessary to
evaluate S™% and to determine k from figure 3 of reference 10.
A detailed example of the application of this method is given
in reference 11.

Lanerey MEMORIAL AERONAUTICAL LABORATORY,
NaTioNaL ApvisorRy COMMITTEE FOR AERONAUTICS,
LaxceLey Fieup, Va., July 15, 1943.



APPENDIX
DERIVATION OF STIFFNESSES AND CARRY-OVER FACTORS

PLATE UNDER COMPRESSION

In order to apply the method of moment distribution in
any form, the values of stiffnesses and carry-over factors are
required for the members in question. Formulas for the
evaluation of these quantities for bars were developed in
reference 3. This appendix gives the corresponding deriva-
tion of the formulas for plates; the sign convention used, as
distinguished from that given in the section on ‘“Definitions,”
corresponds to that of reference 12, in which deflections w are
positive downward and & moment is positive if it produces
compression in the upper fibers.

General deflection surface of a plate buckled under com-
pression.—Before the values of stifiness and carry-over factor
for flat plates under various conditions of edge restraint may
be computed, the deflection surface of a flat plate buckled
under a compressive load with a moment applied along one
unloaded edge must be deseribed.

An infinitely long flat plate under longitudinal compression
is shown in figure 8 with coordinate axes. For equilibrium of
an infinitesimal element of the plate, the following equation
must be satisfied (reference 12, p. 324):

St S 5 S0 (A1)

On the assumption that the plate is infinitely long in the

direction of z, the conditions at the ends do not matter; the
solution of equation (Al) is therefore taken in the form

w=f(y) cos TT'T

The unknown function f{y) may be determined by sub-

(A2)

stituting the expression for w into equation (Al). It is
found that the function f must satisfy the equation
"r’ dz
f ( W)f = (A3)

Equation (A3) is an ordinary differential equation of the
fourth order, the solution of which is

J=c¢ cosh %y-l-c, sinh %y-[—c@ eos ’%‘l"-i- s sin%g—" (A4)

where ¢, ¢, ¢, and ¢, are arbitrary constants and

b fb
a=TJ; )\_[.‘IE

NN/

+y

FIGURE 8.—Infinitely long flat plate under longitudinal cempression.

The deflection surface of the plate is now found by sub-
stituting this result for f in equation (A2):

fw=<c1 cosh %y'l‘(?g sinh o%’(+¢:-3 cos %fl'—l—c‘ sm—Bg cos % (A5)

In this solution, feur conditions may be imposed along the
unloaded edges to fix the four constants. One of the four
conditions will always specify the presence of a moment

B, cos 17? along the near edge, and another will specify that

the deflection w along this edge is zero. The remeining two

conditions will be varied to suit the conditions at the far

edge of the plate of which the stiffness is being computed.
85
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Stiffness of a plate with far edge fixed.—Figure 9 shows
a flat rectangular plate under compression with a moment M

applied along one edge at y= _% and with complete restraint

against rotation along the parallel edge at y=%- The stiffness S
of the plate is defined as '

(),

where (0).' » 18 the rotation of the edge at y=—%expressed
v-—-g -

(A6)

+y -

in"quarter-radians.

The general expression (A5) for the deflection of the plate
must be specialized to the case of figure 9 in which the
boundary conditions are:

k\\%\\\\\\\\\"’/

@), 2 =0. (A7)
—I\I M, cos™
(—5?72+M ot ) 0o A (AS) FIGURE 9,—Plate with moment applied at near cdge, far odge fixed.
After determination of the arbitrary constants in cqua-
( (Ag) | tion (A5) by use of these boundary conditions, the deflection
oy ’“‘ surface for the case of figure 9 is found to be
i o 8 sinh %y sin %_y g cosh cos %31
(a tanh §+ﬂ tan -2—) o ] <a coth ——ﬁ cob ) 8
M sinh 3 sng | cosh cos 5 -
W=z — = cos v~ {A10)
D) tanh 2+ 6 tan S+ a coth E—Bcot &« tanh S48 tan B+« coth E—p cot & )
o 5 ﬁan2 a coth 5 ﬁco§ ata 2+ﬁ an2+aco 3 ﬁco§
i i
From this deflection surface there is obtained
_ Mb 1
(8)7-—%-_4 ( by — B(a’—l—ﬂ’) 1 + 1 (ALL)
tanh +Btan£ a coth %—B cotg
where ¢ is_expressed in quarter-radians. Substitution in equation (A6) gives
D[/a\, (BV 1 1 Su
s [(") +(‘)] T s (A12)
BL/ N 2 anh 248 tan 8 Zeoth E-Beot S| !

[ 4
2 5 cot

Carry-over factor of a plate with far edge fixed.—The
carry-over fact,or’”is deﬁned as the ratio of the moment de-

veloped at the far edge y= (ﬁg 9) to the moment at the

near edge y=—-%~ The moment developed at the far edge is

(M),_%=—"D'(gi€+u 57 "’),__ (A13)

where w is the deflection of the plate of figure 9, given by
equation (A10).
If the indicated differentiation of cquation (A10) is made
and the result substituted in equation (A13), it is found that
o o, B _
'§ tanh §+§ tan —2'

o a, B B
3 coth §+-§ cot.ﬁ-

o a, B B, a_B B
§ tanh §+§ tan -§+§ coth E g cot 5

L
A

(M),.s= 2, cos

(A14)
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The moment at the near edge is, from equation (AS8),

(D, __s =M, cos = (A15)
2z

A

By definition, the carry-over‘ factor is
a a B g a a_ f 8
— (M)'__:_ (—2— tanh §+§- tan 5)_(5 coth 55 cot 5)

(MT"-; (g tanh %"'g tan g)-i-(% coth g———z- cot g)
(A16)

with the sign of the moment at the far edge changed to
conform to the sign convention given in the section
“Definitions.”

Y

FIGURE 10.—Plate with moment applfed at near edge, far edge hinged.

Stiffness of a plate with its far edge hinged.—Figure 10
shows & flat rectangular plate under compression with the

two edges y=:l:g hinged to supports. A moment Af is

applied to the edge 'y=—%; and the stiffness of the plate is
defined as

(A17)

where (6)' » 18 the rotation of the edge y= —% expressed in
=7

quarter-radians. The general expression (A5} will again be
used fo compute 8 and the boundary conditions will be:

(w) =0

I'-:l:-f-

(A18)

=/ o)
- a_y";_[_y_w
':l

L

b=ﬂf=ﬂfocos X (A19)
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(2240 29) =0
T (A20)
2

By use of these boundary conditions, the arbitrary con- .

stants in equation (A5) may be computed, and it is found
that the deflection surface for the case of figure 10 is

-y ay oy By . By
o AL smh—a— coshT‘cos-F sin s ¥
- T
2D(@*+6) | ginh 5 coshg cos 2§ sin g— A
(A21)

From this deflection surface, the magnitude of the rote-
tion 6 along the edge y=——% is found to be

Om-4=4(3), s

_2Mb a 8 @ B
E(a’-{—ﬁ’) a fanh §+B tan —é-[-a coth Tﬁ cot :,,:)

(A22)

where 0 is expressed in quarter-radians. Upon substifution
of this expression for 8 in equation (A17), it is found that

) +&

tanh —g+§ tan g—{—% coth %‘% cot —g

gu=? (A23)

2
According to the boundary condition given in equation

(A20), there is no moment at the edge y=%- Hence, the

carry-over factor O™ with the far edge hinged is zero.

. Btiffness of a plate with far edge free.—Figure 11 shows
a flat rectangular plate under compression with one edge
y=>b free and a moment ) applied to the parailel edge
y=0. The stiffness of the plate is defined as

A
Ir__{ &=~
SI _< al)y-o

where (f),., is the rotation of the plate along the edge y=0
and is expressed in quarter-radians.

The general expression (A5) is used to compute the
rotation . The boundary conditions for & plate with far
edge Iree are:

(A24)

(W) yuo=0 (A25)
_ﬁ(%i'y;-[- p%? —M=14 cos % (A26)
' [%—l— @—w) 5&?%,-1,:]0 (428)
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Upon determination of the arbitrary constants in equation (A5) by use of these boundary conditions, the deflection
surface for the case of figure 11 is found to be - : : -

5—14# cos P}' —cosh %y +& sinh %_y__na (sinh a—:: ;(ﬁ: ;)—mﬁ sin B i T] cos % - (A20)

(Y _, (=5 __ _(BV, (%b
""'—(2) “"(zx “—(z) e (zx
@___mzﬁ cosh & cos f—nla sinh a sin S+-mnp

- m?8 sinh « cos f—n’« cosh « sin B

where

From the deflection surface, the rotation along the edge y=0is found to be

(0) 4( ) [ 2apmn+af(m?+n?) cosh a cos §+ (m*f—n’e?) sinh asin §
y=0"" o LD(c2+F%) m? sinh « cos f—n* B cosh o sin B

where 6 is expressed in quarter-radisns. Upon substitution of this expression for § in equation (A24), the stiffness is found to bo

s [(5)+(3)]

(A30)

B me (1 — tan? E) tanh 5~ n? (1_+ tanh? E) tan 5 . (A31)
() o)) s o (e o
COS. 08

_i

The tngonometmc and hyperbolic functions have been converted to the half angle in order that the same functions can be
used as in the calcula.tlon of the othel stiffnesses.

Accordlng to the boundary condition of equatlon (A27) plate is defined as
there is no moment along the edge y=>b. The carry-over Af
factor O™! is thus zero for the far edge free. S“'-—(‘

Stifness of a plate with equal and opposite moments
applied along the unloaded edges.—Figure 12 shows a flat
rectangular plate under compression, with equal and opposite

moments applied to the edges y=:|:-g-r The stiffness of the | in quarter-radians.

(A32)

where (B)F_ 5 is the rotation along the edge y=—%cxprcssed
2

+y -

L,

FIGURE 12.—~Plate with moment applied at near edge, cqual and opposite moment
FIGURE 11.—Plate with moment applied at near edge, far edge free. at far edge.
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The boundary conditions for this case are:

(w) 5=0 (A33)

=iz

~McosZ  (A34)

=—M= x

ay“'[—"b.t’)

According to the sign convention of the appendix, the mo-
ments at the two edges have the same sign although they
act in opposite directions. By means of these boundary
conditions, the arbitrary constants in equation (A5) may
be computed, and the deflection surface for the case of
figure 12 is found to be

w= Mob* = ﬁ_g/ cosh %y cos = (A35)
D+ 5) cosg cosh % A

From this deflection surface, the rotation ¢ along the edge

——2 is found to be

=t (%)"-%—5 [(25;: (g)’] @ tach 545 an g)
(A36)

which is expressed in quarter-radians. Substitution of this
expression for # in equation (A32) gives the stiffness of the

plate,
oI @6 e

RETTT Y

(A37)

Because the moment at y=g is equal and opposite to that

at y= —-g; the carry-over factor ("Vis —1 in accordance with

plate of figure 8 is reversed, the plate will be under tension
and equation (A1)} will become

otw ow | otw = O*w
2ot oy B ar 0

The formal solution of this equetion is precisely the same as
equation (A5), except that the parameters « and B8 are now

(A38)

defined by
=r\/§ \/ —-f:+fiﬁ (A40)

Because the stiffnesses S, S, 8™ and S, and the carry-
over factor C, as calculated for a plate under compression,
are based directly upon equation (A5), it follows that the
expression derived for each one of these quantities is still
correct when the plate is under tension, provided « and 8
are now given by equations (A39) and (A40).

The new expressions for « and g are complex and may be
written in the form

=A+iB (Ad1)
B~ptid (442)

where
A=3 = \/ /(b) "'H' (443)
=5 +-3 (84

The expressions (A41) and (A42) for e¢and Bare substituted
into equations (A12) for S, equation (A23) for S, equetion
(A31) for S, equation (A37) for ST, and equation (A16)
for €. The resulis of the substitution show that, for a plate
in tension,

D AB Asin 4B—Bsinh 44

the sign convention given in the section “Definitions.” §= b 2 A*sin®2B—B’sinh’ 24 (445)
PLATE UNDER TENSION S-”__ZAB(COSth—[— cos 2B) (sinh’A—[— si.n’ B)
If the direction of the applied longitudinal force on the b B sinh 44— A sin 4B (A486)
. A(m?2— 16A’Bz—[— 8mB?) sin 4B—B(m*—16.4?B*—8m.1?) sinh 4.4 -
e A o (A1)
{ (A?4B*) (m*—16.A2B%) (cosh? 24 cos® 2B+sinh? 24 sin® 2B)
+[A*(m4-4B%)*—B?(m—4.4%)% (sinh? 2A cos® 2B+ cosh? 2.4 sin? 2B)
sv—L4p cosh 2A4-+cos 2B (A48) These formulas permit tables of stiffnesses and carry-over
~ b“ B sinh 24+ A sin 2B factors to be prepared for a plate in tension similer to the
C_A cosh 24 sin 2B—B sinh 2.4 cos 2B (Ado tables of reference 5 for a plate in compression. Such tables,
" B cosh 24 sinh 24— A sin 2B cos 2B ) however, have not been prepared, and in ligu of them,
where formulas (A45) to (A49) may be used directly if the need
m=4(A*—B?) (19 (A50)
m= B Y should arise.

848107T—30——@
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TABLE I

RESULTS FOR SOLUTION OF BAR PROBLEM !
[For member ¢of, P=0, Pl =0, E=28X108 1b/sq 0., (L{f)esr=0, 80d STi4ym3397X105 Ib-in.]

Members be and de Member cd Member be Member ed Member de
D S - St
&y Y
: s | g | P ] 5 S | B
P = E (Z-) P = Z 8 4, 7 ST,y Sy, J
A 4 £) ba S| Ol 5 Cl, Ny
) | anyq iy @AY (NF Ja (0) |apyg in | AbsGin) ( 7). @) | @otng ) C (ib-in.) @b-n)
L4 | 0280 20,130 | 17.80X10° | .72 | 8,040 | 25280 | 2840108 | 2.97 LA0AXI0| 5453100 | 0.122¢ | 507108 | 2783 | —m.40xi0t| 2,663 51,000 | 0.133
L5 6,430 26,50 | 16.30 3.85 | 8,170 | 25620 | 22.08 3.03 L155 b.24 L1197 | 5.01 2.080 | —3.41 —322.60 | 50,100 } .138
16} 9,560 ) 20,090 | 1580 8.97 | 8,270 | 25870 | 22.52 3.08 . 930 5.07 LITA | 4.95 5904 | —4.56 —5,478 49,200 | .48
1.7 | 9,670 | 30,840 | 14.8¢ ;g 8,370 | 26,270 | 92.00 3.12 .600 4.00 L1161 | 4.90 10.22 | —6.44 —5 159 83201 163
18| 9,770 | 30,600 | 1416 £ g460 | 2885 | 2109 817 .484 40 1130 | 4.85 22.0f | —10.01 —7,832 47,460 | 181
19 | 9,860} 50,040 |13.52 433 | 8510 | 26,780 |2L32 3.21 . 289 4.88 L1112 | 4.80 58.42 | —18.50 —10,310 16,560 | .200
2.0 | 9,910 81,100 | 12.08 444 186101 27,010 | 20.99 3.95 005 492 J1096 | 4.76 5453 | —5L71 —13, 140 43,650 | . 226
2.1 | 10,010 | 31,420 | 12.44 435 | 8670 37,210 | 20.68 3.20 | —101 4.9 L1077 | 4.72 485.8 19.12 —15,15 14,700 | .261
2.2 | 10,080 | 81,630 | 11.96 4.08 | 8730 | 27,300 | 20.38 282 | —.3m 5.13 L1064 | 4.68 53.23 16.68 —1¢, 5%0 43,450 | .8
2.8 | 10,140 ,820 | 1L.49 471 |8mo| 27500 |20.12 2.35 | —.512 834 .1051 | 4.85 22.72 10.25 —23,020 42,470 | .38
2.4 | 10,190 | 31,990 | 1.10 4.86 | 8820 | 27,700 | 10.80 3.38 | —.688 5.54 L1040 | 4.62 12.47 7.5 —20, 050 10,700 | . 184
2.5 | 10,240 , 150 | 10.71 4.08 | 8870 | 27,840 | 10.88 3.41 | —.89 588 1026 | 4.58 7.610 578 —31, 110 37,50} 720
2.6 | 10,200 , 300 | 10.34 506 8910 27,070 | 19.41 344 | —1.218 6.33 L1014 | 4.56 5. 189 4.57 —27,010 30,801 LG
2.7 110,310 | 33,440 | 9.99 516 | 8,05 | 28000 | 10.21 3.48 | —1.361 6. 91 L1006 | 4.53 8.708 73 ~18, -8, 760 | 1.38
2.8 | 10,380 570 | 9.68 5.28 | 8000 | 28210 | 18.99 3.48 | —1.633 .7 L0004 | 4.50 2.930 3.005 -, 01 80,560 | . 187
2.9 | 10,410 630 | 0.3 535 | 9,020 | 28,300 | 18.85 351 | —LoiL 8.00 .0336 | 4.48 3.402 2033 —74, 520 8,480 | 833
3.0 | 10,450 | 32,790 3_-‘10 5.44 | 0,05 | 28,400 | 18.66 3.63 [ —2.227 9.9 L0678 | 4.45 2.028 2530 [-102,200 53,820 | 1.00
1 Table i3 from reference 8, table III.
TABLE II
RESULTS FOR SOLUTION OF PLATE PROBLEM
Er kv Sy | SV fz)' br\| S U | G&®) gmo
Gstep4) | Gtep 9 | Dpyw | (D) w\ir bw (Dibyr | Gtep 8 | (step )
A A
b";—l.ﬂ,b—r-ﬂ.ﬂ
0.8 | 82| 16820 0.8410 0755 | 1.5085
.9 36 }:4838 L7410 L 5904 1.3413 4845
L0 | .40 2370 . 6185 .3729 L9014 .
L2 48 L4937 L2468 —. 6728 | —.4281
A o0 A
5;—2.0,E—1.0
0.7 2.8 0. 6907 0.2954 —0.0621 0.2333
.8 3.2 L4221 L2111 —.3040 | —.0820 2 104
.9 3.6 .2275 . 1137 —.6548 | —. 5411
L0 4.0 0 —L2117 | —1.2117
A A
6;—3.0,6;—1.5
0.7 2.8 0.4373 0.2188 —0. 1640 0. 0546
.8 3.2 3668 L1784 ~.2868 | —.1084 2 0ud
.9 3.6 L2706 1353 —.4351 | —.20%8
L0 40 L1781 0390 — 6179 | —. 5280
A A
5—4.0,1);—2.0
0.7 2.8 0. 4448 0.2224 —0.1166 0.1068
.8 3.2 . 4008 - 2004 — 1700 . 0205 2,902
.9 3.8 .3651 1776 —.2501 | —.072
1.0 40 L3076 . 1538 —. 3285 | —.1M47




